Lambda ,Map and eval in Pandas
1. Simple
import pandas as pd
a=pd.DataFrame({"a":["deea","123","deep","deepak"]})
b=pd.DataFrame({"b":["deeap","1234","deepak","deepa"]})
c=pd.DataFrame(map(lambda x,y:x in y,a['a'],b['b']))
print(c)
result :
0
0 True
1 True
2 True
3 False
2. Using Dynamic Formula :
import pandas as pd
a=pd.DataFrame({"a":["deea","123","deep","deepak"]})
b=pd.DataFrame({"b":["deeap","1234","deepak","deepa"]})
c=pd.DataFrame(map(eval(input("enter -lambda x,y:x in y")),a['a'].values,b['b'].values))
print(c)
0
0 True
1 True
2 True
3 False
3)Using Dynamic Formula and 1st columns
import pandas as pd
a=pd.DataFrame({"a":["deea","123","deep","deepak"]})
b=pd.DataFrame({"b":["deeap","1234","deepak","deepa"]})
c=pd.DataFrame(map(eval(input("enter -lambda x,y:x in y")),a.iloc[:,0],b.iloc[:,0]))
print(c)
Result:
0
0 True
1 True
2 True
3 False
"""
"""
Column Names
data.iloc[:,0] # first column of data frame (first_name)data.iloc[:,1] # second column of data frame (last_name)
data.iloc[:,-1] # last column of data frame (id)
Rows and Columns
data.iloc[0:5] # first five rows of dataframe
data.iloc[:, 0:2] # first two columns of data frame with all rows
data.iloc[[0,3,6,24], [0,5,6]] # 1st, 4th, 7th, 25th row + 1st 6th 7th columns.
data.iloc[0:5, 5:8] # first 5 rows and 5th, 6th, 7th columns of data frame
"""